

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune - 16 (Autonomous)

End Semester Examination: OCT 2024 **Faculty: Science and Technology**

Program: B.Sc. Semester: V SET: A

Program (Specific): B.Sc. General **Course Type: DSEC-II**

Max. Marks: 35 Class: T.Y.B.Sc.

Name of the Course: Inorganic Chemistry -I

Course Code: CH-504 Time: 2Hr

Paper: IV

Instructions to the candidate:

- 1) There are 4 sections in the question paper. Write each section on separate page.
- 2) All Sections are compulsory.
- *3)* Figures to the right indicate full marks.
- 4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Rewrite the sentence with correct option.

 $5 \times 1 = 5$ Marks

- **1.** According to MOT, metal ion contributes _____ atomic orbitals.
- (a) 4
- (b) 5
- (c) 6
- (d) 9
- **2.** According to VBT, pi bond is formed when _____ orbital overlaps with _____ orbital.
- (a) Filled Ligand, Empty Metal
- (b) Filled Metal, Empty Ligand
- (b) Filled Ligand, Filled Metal
- (d) Empty Metal, Empty Ligand

- 3. $\underline{\hspace{1cm}} = \frac{4}{9} \Delta_{o.}$
- (a) $\Delta_{\rm sp}$
- (b) Δ_{tbn} (c) Δ_{t} (d) Δ_{tet}
- **4.** In tetrahedral complexes _____ orbitals become stable, as per CFT.
- (a) t_2
- (b) t_{2g}
- (c) e
- (d) e_g
- **5.** In a polymer, the smallest repeating unit is called as _____.
- (a) tetramer
- (b) trimer
- (c) dimer
- (d) monomer

Q2) Answer the following: (ANY 4)

 $4 \times 1 = 4$ Marks

- **1.** Name the hybridisation seen in tetrahedral complexes.
- **2.** Define outer orbital octahedral complexes.
- 3. Define CFSE.
- **4.** Give the criteria for weak field octahedral complexes.
- **5.** Write the formula to calculate magnetic moment of complex.
- **6.** Draw the structure of borazole.

SECTION: B

Q3) Answer the following: (ANY 4)

 $4 \times 2 = 8$ Marks

- i. Name the geometry and hybridisation seen in $[CoF_6]^{3-}$ complex.
- ii. Give any two limitations of VBT.
- iii. State any two assumptions of MOT.
- iv. Calculate CFSE for $[CoF_6]^{3-}$ complex. (Z = 27)
- v. Give two examples of square planar complexes.
- vi. Give any two applications of silicones.

SECTION: C

Q4) Answer the following: (ANY 4)

 $4 \times 2 = 8$ Marks

- a) State Electroneutrality principle. Draw the diagram for $[Fe(H_2O)_6]^{3+}$ with 50% covalent bonding.
- **b**) State any two assumptions of VBT.
- c) Calculate CFSE for d⁵ ion in strong and weak octahedral field.
- **d**) Name any two factors affecting Δ_{o} .
- e) Draw MO diagram of $[CoF_6]^{3\text{-}}$ complex.
- f) State any two differences between Inorganic and Organic polymers.

SECTION: D

Q5) Answer the following: (ANY 2)

 $2 \times 5 = 10 \text{ Marks}$

- **1.** Explain $[MnCl_4]^{2-}$ complex with help of VBT. (Z=25)
- 2. Discuss Jahn Teller theorem with an example.
- 3. Write a short note on Nephelauxetic effect.
- 4. Explain Charge transfer spectra.
